skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lindale, Jacob R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Coherent evolution is punctuated by dynamical processes such as chemical exchange, conformational transformation, or site hopping in many important problems ranging from biomolecular function to ion trap quantum computation. One well-explored example is nuclear magnetic resonance (NMR) spectroscopy, where experimental development is grounded in decades-old theory, but structural dynamics are not easily integrated into this picture. Here, we introduce an approach that selectively excites NMR resonances that undergo chemical exchange while suppressing the signal arising from nondynamic components of the system. We show that for exchange rates spanning more than four orders of magnitude, one can still selectively excite spins undergoing exchange while suppressing static resonances. Generalizing this approach, to selectively excite (or selectively preserve) only members of an ensemble that have undergone exchange or rearrangement, has the potential to improve the analytical power of many spectroscopic techniques. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  3. The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (μT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency. 
    more » « less
  4. Hyperpolarization methods in magnetic resonance overcome sensitivity limitations, especially for low-γ nuclei such as 13 C and 15 N. Signal Amplification By Reversible Exchange (SABRE) and extended SABRE (X-SABRE) are efficient and low-cost methods for generating large polarizations on a variety of nuclei, but they most commonly use low magnetic fields (μT–mT). High field approaches, where hyperpolarization is generated directly in the spectrometer, are potentially much more convenient but have been limited to selectively hyperpolarize single targets. Here we introduce a new pulse sequence-based approach that affords broadband excitation of SABRE hyperpolarization at high magnetic fields without having to tailor pulse sequence parameters to specific targets. This permits simultaneous hyperpolarization of multiple targets for the first time at high field and offers a direct approach to integration of high-field SABRE hyperpolarization into routine NMR applications, such as NMR-based metabonomics and biomolecular NMR. 
    more » « less
  5. SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, combined with simulations and experiment, shows substantial magnetization improvements relative to traditional X-SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time symmetry in the toggling frame make magnetization generation more robust to experimental imperfections. 
    more » « less
  6. New pulse sequences yield improved polarization for SABRE experiments and reframe our theoretical understanding of the dynamics. 
    more » « less